Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ¹ по дисциплине

«Анализ и синтез автоматизированных систем»

Направление подготовки	12.03.04 «Биотехнические системы и технологии»				
Направленность (профиль) образовательной программы	Инженерное дело в медико-биологической практике				
O	беспечивающее	подразделение			
	Кафедра	УИПП			
Разработчик ФОС:					
преподаватель кафедры УИ	ИПП		М.А. Мельниченко		
(должность, степень, ученое звание) (подпись) (ФИО)					
Оценочные материалы по д	цисциплине ра	ассмотрены и од	обрены на заседании		
кафедры, протокол № от «» 2022 г.					
Заведующий кафедрой <i>М.А. Горькавый</i>					
· · · · · ·		•	_		
			_		

¹ В данном документе представлены типовые оценочные средства. Полный комплект оценочных средств, включающий все варианты заданий (тестов, контрольных работ и др.), предлагаемых обучающемуся, хранится на кафедре в бумажном и электронном виде.

1 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами образовательной программы

Таблица 1 – Компетенции и планируемые результаты обучения по дисциплине

Код и наименование	Индикаторы достижения	Планируемые результаты				
компетенции		обучения по дисциплине				
	Общепрофессиональные					
ОПК-1	ОПК-1.1 Знает	Способность проводить				
Способен применять	фундаментальные законы	анализ и синтез систем				
естественнонаучные	природы, основные физические	автоматического управления,				
и общеинженерные	и математические законы	осуществлять моделирование				
знания, методы	ОПК-1.2 Умеет применять	систем в современных				
математического	естественнонаучные и	программных продуктах.				
анализа и	общеинженерные знания для					
моделирования в	решения задач теоретического и					
инженерной	прикладного характера					
деятельности,	ОПК-1.3 Владеет навыками					
связанной с	применения методов					
разработкой,	математического анализа и					
проектированием,	моделирования в инженерной					
конструированием,	деятельности, связанной с					
технологиями	разработкой, проектированием,					
производства и	конструированием,					
эксплуатации	технологиями производства и					
биотехнических	эксплуатации биотехнических					
систем	систем					

Таблица 2 – Паспорт фонда оценочных средств

Контролируемые разделы (темы) дисциплины	Формируемая компетенция	Наименование оценочного средства	Показатели оценки
Разделы 1-4	ОПК-1	Лабораторные	Полнота и правильность
Газделы 1-4	OHK-1	работы	выполнения задания
Разделы 1-4	ОПК-1	РГР	Полнота и правильность
Газделы 1-4	OHK-1	111	выполнения задания
	ОПК-1	Контрольные	Правильность
Разделы 1-4		вопросы к	выполнения задания
		зачету с	
		оценкой	

2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 3).

Таблица 3 – Технологическая карта

	Наименовани е оценочного средства	Сроки выполне ния	Шкала оцениван ия	Критерии оценивания		
	8 семестр Промежуточная аттестация в форме зачета с оценкой					
1	Лабораторная работа 1	в течение семестра	5 баллов	5 баллов — студент показал отличные навыки применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного учебного материала.		
2	Лабораторная работа 2	в течение семестра	5 баллов	4 балла — студент показал хорошие навыки применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного учебного материала.		
3	Лабораторная работа 3	в течение семестра	5 баллов	3 балла – студент показал удовлетворительно владение навыками применения полученно знаний и умений при решен профессиональных задач в рамках усвоенно учебного материала.		
4	Лабораторная работа 4	в течение семестра	5 баллов	2 балла — студент продемонстрировал недостаточный уровень владения умениями и навыками при решении профессиональных задач в рамках усвоенного учебного материала.		
5	Контрольные вопросы к зачету с оценкой	в течение семестра	40 баллов	40 баллов — 91-100 % правильных ответов — высокий уровень знаний; 30 баллов — 71-90 % правильных ответов — достаточно высокий уровень знаний; 20 балл — 61-70 % правильных ответов — средний уровень знаний; 10 баллов — 51-60 % правильных ответов — низкий уровень знаний; 0 баллов — 0-50 % правильных ответов — очень низкий уровень знаний.		
6	Выполнение РГР	в течение семестра	40 баллов	40 баллов — студент показал отличные навыки применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного учебного материала. 30 баллов — студент показал хорошие навыки применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного учебного материала. 20 балл — студент показал удовлетворительное владение навыками применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного		

	Наименовани е оценочного средства	Сроки выполне ния	Шкала оцениван ия	Критерии оценивания
				учебного материала. 10 баллов — студент продемонстрировал недостаточный уровень владения умениями и навыками при решении профессиональных задач в рамках усвоенного учебного материала.
ИТС	ОГО:	-	100	-
			баллов	

Критерии оценки результатов обучения по дисциплине:

- 0 64 % от максимально возможной суммы баллов «неудовлетворительно» (недостаточный уровень для промежуточной аттестации по дисциплине);
- 65 74 % от максимально возможной суммы баллов «удовлетворительно» (пороговый (минимальный) уровень);
- 75 84 % от максимально возможной суммы баллов «хорошо» (средний уровень);
- 85 100 % от максимально возможной суммы баллов «отлично» (высокий (максимальный) уровень)
 - 3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций в ходе освоения образовательной программы
 - 3.1 Задания для текущего контроля успеваемости

Лабораторная работа 1. Моделирование систем управления.

- 1. Как найти передаточную функцию интегратора, охваченного обратной связью?
- 2. Как найти передаточную функцию системы по возмущению?
- 3. Почему при использовании ПД-регулятора система не компенсирует постоянное возмущение?
- 4. Как, зная статический коэффициент усиления по возмущению, определить установившееся отклонение от заданного курса?
- 5. Какими свойствами должна обладать передаточная функция по возмущению для того, чтобы постоянное возмущение полностью компенсировалось?
- 6. Какими свойствами должен обладать регулятор для того, чтобы постоянное возмущение полностью компенсировалось?
- 7. Какие преимущества дает использование интегрального канала в ПИД-регуляторе?
- 8. Почему порядок передаточной функции замкнутой системы по возмущению с ПИД-регулятором на 1 больше, чем для системы с ПД-регулятором?

Лабораторная работа 2. Исследование разомкнутой линейной системы.

- 1. Что такое
- передаточная функция
- нули и полюса передаточной функции
- импульсная характеристика (весовая функция)
- переходная функция
- частотная характеристика
- модель в пространстве состояний

- модель вида «нули-полюса»
- коэффициент усиления в статическом режиме
- полоса пропускания системы
- время переходного процесса
- частота среза системы
- собственная частота колебательного звена
- коэффициент демпфирования колебательного звена
- 2. В каких единицах измеряются
- коэффициент усиления в статическом режиме
- полоса пропускания системы
- время переходного процесса
- частота среза системы
- собственная частота колебательного звена
- коэффициент демпфирования колебательного звена
- 3. Как связана собственная частота с постоянной времени колебательного звена?
- 4. Может ли четверка матриц

$$A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & -3 & -1 \\ 2 & 2 & 2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}; C = \begin{bmatrix} 1 & 2 \end{bmatrix}; D = 0$$

быть моделью системы в пространстве состояний? Почему? Какие соотношения между матрицами должны выполняться в общем случае?

Лабораторная работа 3. Локальные задачи управления. Многоканальное управление.

- 1. Как получить передаточную функцию по линейным дифференциальным уравнениям системы?
- 2. Как построить ЛАФЧХ разомкнутой системы?
- 3. Как определяются запасы устойчивости по амплитуде и по фазе? Что означают эти величины? В каких единицах они измеряются?
- 4. Что такое
- корневой годограф
- перерегулирование
- время переходного процесса
- 5. Как влияет увеличение коэффициента усиления контура на ЛАФЧХ?
- 6. Почему в дифференцирующей части ПД-регулятора используется дополнительный фильтр в виде апериодического звена с постоянной времени T_{ν} ?
- 7. Какие преимущества дает использование ПД-регулятора в сравнении с П-регулятором?
- 8. Как влияет увеличение коэффициента усиления контура на перерегулирование и время переходного процесса?
- 9. Как найти порядок передаточной функции замкнутой системы, зная характеристики всех ее блоков?
- 10. Связана ли близость полюсов передаточной функции замкнутой системы к мнимой оси с малым запасом устойчивости?
- 11. Как зависит статический коэффициент усиления замкнутой системы от характеристик измерительного устройства?
- 12. Что такое астатическая система? Что такое порядок астатизма?

Лабораторная работа 4. Программирование системы управления

- 1. Как ввести ограничение на скорость перекладки руля, если известна постоянная времени привода?
- 2. Как изменить функцию **overshoot**, чтобы она определяла время переходного процесса с точностью 5%?
- 3. Что такое грубость (робастность) системы?
- 4. Что означает запись

 $\mathbf{x} = [];$

x = [x y];

phi(:,1)

phi(1,:)

Расчетно-графическая работа «Моделирование систем управления»

Цель работы: освоение методов моделирования линейных систем Задачи работы:

- научиться строить и редактировать модели систем управления в пакете;
- научиться изменять параметры блоков;
- научиться строить переходные процессы;
- оценить влияние настроечных параметров ПИД-регулятора на качественные показатели процесса регулирования в одноконтурной АСР.

Содержание отчёта: краткое описание исследуемой системы, схемы ПИДрегулятора и одноконтурной АСР, графики переходных процессов в одноконтурной АСР при изменении задания и отработке возмущения с различными типами регуляторов и соответствующие им настройки регуляторов, анализ влияния настроечных параметров на процесс регулирования.

Описание моделируемой системы:

В работе требуется провести исследование одноконтурной АСР с ПИД-регулятором. Её структурная схема показана на рисунке 1.

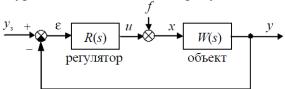


Рисунок 1 – Структурная схема одноконтурной АСР

Передаточная функция промышленных объектов во многих случаях с достаточной точностью может быть представлена в виде:

$$W(s) = \frac{K_{\text{of}}e^{-\tau s}}{(Ts+1)(\sigma s+1)}$$

где T,σ – соответственно, большая и меньшая постоянные времени объекта управления; K об – коэффициент усиления объекта управления; τ – время чистого запаздывания.

Передаточная функция ПИД-регулятора

$$W_{\rm p}(s) = K_{\rm p} + \frac{K_{\rm H}}{s} + K_{\rm A}s$$
,

где Kp , Kи , Kд – соответственно, настроечные коэффициенты пропорциональной, интегральной и дифференциальной составляющей.

Залание:

1. Выполните моделирование системы

- 2. Подберите настроечные параметры регулятора, обеспечивающие устойчивость замкнутой системы регулирования.
 - 3. Постройте график переходного процесса при отработке возмущения.
- 4. Проведите исследование одноконтурной ACP с различными типами регуляторов (П, ПИ, ПИД, ПД) с целью оценки влияния настроечных параметров регулятора на прямые показатели качества процесса регулирования (статическая и динамическая ошибки регулирования, величина перерегулирования, время переходного процесса), а также на устойчивость системы.

Варианты для выполнения РГР представлены в таблице 7.

Таблица 4 – Варианты заданий на РГР

	1 ''			
№	$K_{o\delta}$	T	σ	τ
1	1.5	10	5	2
2	2.0	15	4	3
3	3.0	17	3	4
4	3.5	18	4	2
5	3.2	12	5	3
6	0.5	13	7	4
7	1.2	14	6	3
8	2.5	11	3	2
9	1.7	18	3	3
10	2.1	12	4	4

Содержание РГР:

РГР состоит из пояснительной записки и графической части. Пояснительная записка должна содержать: введение, техническое задание в соответствии с вариантом, основную часть расчеты со всеми пояснениями), заключение и список использованных источников.

Пояснительную записку представляют к защите в сброшюрованном виде. Примерный объем пояснительной записки 15 с.

Выполненная РГР должна удовлетворять нормативным документам университета, с которыми можно ознакомиться в отделе стандартизации или на сайте университета. Отступления от указанных требований могут служить основанием для возврата проекта на исправление.

Контрольные вопросы к зачету с оценкой

- 1. Основные понятия теории автоматического управления.
- 2. Классификация САУ.
- 3. Математические модели систем управления. Формы представления моделей.
- 4. Системы статического регулирования по принципу отклонения.
- 5. Системы астатического регулирования по принципу отклонения.
- 6. Системы с регулированием по возмущению.
- 7. Уравнения статики и динамики. Линеаризация дифференциальных уравнений.
- 8. Формы записи линейных дифференциальных уравнений. Передаточные функции.
- 9. Структурные схемы. Преобразование структурных схем.
- 10. Частотные характеристики.
- 11. Временные характеристики.
- 12. Классификация звеньев. Безынерционное (пропорциональное) звено. Примеры.
- 13. Интегрирующие звенья. Примеры.
- 14. Дифференцирующие звенья. Примеры.
- 15. Апериодическое звено. Примеры.
- 16. Форсирующее звено. Примеры.

- 17. Колебательное звено. Примеры.
- 18. Неминимально-фазовые звенья.
- 19. Понятие устойчивости. Условие устойчивости линейных непрерывных систем автоматического управления. Влияние вида корней характеристического уравнения на устойчивость системы.
- 20. Алгебраические критерии устойчивости.
- 21. Критерий Найквиста.
- 22. Устойчивость систем со звеном запаздывания.
- 23. Структурно устойчивые и структурно неустойчивые системы. Влияние структуры и передаточного коэффициента на устойчивость.
- 24. Оценка качества управления. Прямые показатели качества.
- 25. Частотные показатели качества управления.
- 26. Корневые показатели качества управления.
- 27. Интегральные показатели качества управления.
- 28. Точность систем.
- 29. Чувствительность систем.
- 30. Управляемость и наблюдаемость.
- 31. Синтез линейных систем управления. Методы коррекции динамических свойств систем.
- 32. Синтез последовательных корректирующих устройств по ЛАЧХ.
- 33. Синтез параллельных корректирующих устройств по ЛАЧХ.
- 34. Синтез линейных систем управления с использованием оценки ИВМО.
- 35. Модальное регулирование.
- 36. Анализ непрерывных САУ на компьютере.
- 37. Использование принципа инвариантности.